баннер
Дом

Климатическая испытательная камера

Климатическая испытательная камера

  • A Brief Discussion on the Use and Maintenance of Environmental Testing Chamber
    May 10, 2025
    Ⅰ. Proper Use of LABCOMPANION's Instrument Environmental testing equipment remains a type of precision and high-value instrument. Correct operation and usage not only provide accurate data for testing personnel but also ensure long-term normal operation and extend the equipment's service life.   First, before conducting environmental tests, it is essential to familiarize oneself with the performance of the test samples, test conditions, procedures, and techniques. A thorough understanding of the technical specifications and structure of the testing equipment—particularly the operation and functionality of the controller—is crucial. Carefully reading the equipment’s operation manual can prevent malfunctions caused by operational errors, which may lead to sample damage or inaccurate test data.   Second, select the appropriate testing equipment. To ensure smooth test execution, suitable equipment should be chosen based on the characteristics of the test samples. A reasonable ratio should be maintained between the sample volume and the effective chamber capacity of the test chamber. For heat-dissipating samples, the volume should not exceed one-tenth of the chamber’s effective capacity. For non-heating samples, the volume should not exceed one-fifth. For example, a 21-inch color TV undergoing temperature storage testing may fit well in a 1-cubic-meter chamber, but a larger chamber is required when the TV is powered on due to heat generation.   Third, position the test samples correctly. Samples should be placed at least 10 cm away from the chamber walls. Multiple samples should be arranged on the same plane as much as possible. The placement should not obstruct the air outlet or inlet, and sufficient space should be left around the temperature and humidity sensors to ensure accurate readings.   Fourth, for tests requiring additional media, the correct type must be added according to specifications. For instance, water used in humidity test chambers must meet specific requirements: the resistivity should not be less than 500 Ω·m. Tap water typically has a resistivity of 10–100 Ω·m, distilled water 100–10,000 Ω·m, and deionized water 10,000–100,000 Ω·m. Therefore, distilled or deionized water must be used for humidity tests, and it should be fresh, as water exposed to air absorbs carbon dioxide and dust, reducing its resistivity over time. Purified water available on the market is a cost-effective and convenient alternative.   Fifth, proper use of humidity test chambers. The wet-bulb gauze or paper used in humidity chambers must meet specific standards—not just any gauze can substitute. Since relative humidity readings are derived from the dry-bulb and wet-bulb temperature difference (strictly speaking, also influenced by atmospheric pressure and airflow), the wet-bulb temperature depends on water absorption and evaporation rates, which are directly affected by the gauze quality. Meteorological standards require that wet-bulb gauze must be a specialized "wet-bulb gauze" made of linen. Incorrect gauze may lead to inaccurate humidity control. Additionally, the gauze must be installed properly: 100 mm in length, tightly wrapped around the sensor probe, with the probe positioned 25–30 mm above the water cup, and the gauze immersed in water to ensure precise humidity control.   Ⅱ. Maintenance of Environmental Testing Equipment Environmental testing equipment comes in various types, but the most commonly used are high-temperature, low-temperature, and humidity chambers. Recently, combined temperature-humidity test chambers integrating these functions have become popular. These are more complex to repair and serve as representative examples. Below, we discuss the structure, common malfunctions, and troubleshooting methods for temperature-humidity test chambers.   (1) Structure of Common Temperature-Humidity Test Chambers In addition to proper operation, test personnel should understand the equipment’s structure. A temperature-humidity test chamber consists of a chamber body, air circulation system, refrigeration system, heating system, and humidity control system. The air circulation system typically features adjustable airflow direction. The humidification system may use boiler-based or surface evaporation methods. The cooling and dehumidification system employs an air-conditioning refrigeration cycle. The heating system may use electric fin heaters or direct resistance wire heating. Temperature and humidity measurement methods include dry-wet bulb testing or direct humidity sensors. Control and display interfaces may feature separate or combined temperature-humidity controllers.   (2) Common Malfunctions and Troubleshooting Methods for Temperature-Humidity Test Chambers 1.High-Temperature Test Issues   If the temperature fails to reach the set value, inspect the electrical system to identify faults. If the temperature rises too slowly, check the air circulation system, ensuring the damper is properly adjusted and the fan motor is functioning. If temperature overshooting occurs, recalibrate the PID settings. If the temperature spikes uncontrollably, the controller may be faulty and require replacement.   2.Low-Temperature Test Issues   If the temperature drops too slowly or rebounds after reaching a certain point:                Ensure the chamber is pre-dried before testing.                Verify that samples are not overcrowded, obstructing airflow.                If these factors are ruled out, the refrigeration system may need professional servicing. Temperature rebound is often due to poor ambient conditions (e.g., insufficient clearance behind the chamber or high ambient temperature).   3.Humidity Test Issues   If humidity reaches 100% or significantly deviates from the target:                  For 100% humidity: Check if the wet-bulb gauze is dry. Inspect the water level in the wet-bulb sensor’s reservoir and the automatic water supply system. Replace or clean hardened gauze if necessary.                  For low humidity: Verify the humidification system’s water supply and boiler level. If these are normal, the electrical control system may require professional repair.   4.Emergency Faults During Operation   If the equipment malfunctions, the control panel will display an error code with an audible alarm. Operators can refer to the troubleshooting section in the manual to identify the issue and arrange for professional repairs to resume testing promptly.   Other environmental testing equipment may exhibit different issues, which should be analyzed and resolved case by case. Regular maintenance is essential, including cleaning the condenser, lubricating moving parts, and inspecting electrical controls. These measures are indispensable for ensuring equipment longevity and reliability.
    ЧИТАТЬ ДАЛЕЕ
  • User Guide for Environmental Test Equipment
    Apr 26, 2025
    1. Basic Concepts Environmental test equipment (often referred to as "climate test chambers") simulates various temperature and humidity conditions for testing purposes.                                                                                    With the rapid growth of emerging industries such as artificial intelligence, new energy, and semiconductors, rigorous environmental testing has become essential for product development and validation. However, users often face challenges when selecting equipment due to a lack of specialized knowledge.   The following will introduce the basic parameters of the environmental test chamber, so as to help you make a better choice of products.   2. Key Technical Specifications (1) Temperature-Related Parameters 1. Temperature Range   Definition: The extreme temperature range in which the equipment can operate stably over long periods.   High-temperature range:  Standard high-temperature chambers: 200℃, 300℃, 400℃, etc.  High-low temperature chambers: High-quality models can reach 150–180℃. Practical recommendation: 130℃ is sufficient for most applications.   Low-temperature range: Single-stage refrigeration: Around -40℃. Cascade refrigeration: Around -70℃. Budget-friendly options: -20℃ or 0℃.                                         2. Temperature Fluctuation   Definition: The variation in temperature at any point within the working zone after stabilization.   Standard requirement: ≤1℃ or ±0.5℃.   Note: Excessive fluctuation can negatively impact other temperature performance metrics.   3. Temperature Uniformity   Definition: The maximum temperature difference between any two points in the working zone.   Standard requirement: ≤2℃.   Note: Maintaining this precision becomes difficult at high temperatures (>200℃).   4. Temperature Deviation   Definition: The average temperature difference between the center of the working zone and other points.   Standard requirement: ±2℃ (or ±2% at high temperatures).   5. Temperature Change Rate   Purchasing advice: Clearly define actual testing requirements. Provide detailed sample information (dimensions, weight, material, etc.). Request performance data under loaded conditions.(How many produce you going to test once?) Avoid relying solely on catalog specifications.   (2) Humidity-Related Parameters 1. Humidity Range   Key feature: A dual parameter dependent on temperature.   Recommendation: Focus on whether the required humidity level can be maintained stably.   2. Humidity Deviation   Definition: The uniformity of humidity distribution within the working zone.   Standard requirement: ±3%RH (±5%RH in low-humidity zones).   (3) Other Parameters 1. Airflow Speed   Generally not a critical factor unless specified by testing standards.   2. Noise Level   Standard values: Humidity chambers: ≤75 dB. Temperature chambers: ≤80 dB.   Office environment recommendations: Small equipment: ≤70 dB. Large equipment: ≤73 dB.   3. Purchasing Recommendations Select parameters based on actual needs—avoid over-specifying. Prioritize long-term stability in performance. Request loaded test data from suppliers. Verify the true effective dimensions of the working zone. Specify special usage conditions in advance (e.g., office environments).
    ЧИТАТЬ ДАЛЕЕ
  • Сводка условий тестирования светодиодов
    Apr 22, 2025
    Что такое светодиод? Светодиод (LED) — это особый тип диода, который излучает монохроматический прерывистый свет при подаче прямого напряжения — явление, известное как электролюминесценция. Изменяя химический состав полупроводникового материала, светодиоды могут производить свет в диапазоне, близком к ультрафиолетовому, видимому или инфракрасному. Первоначально светодиоды в основном использовались в качестве индикаторных ламп и панелей индикации. Однако с появлением белых светодиодов они теперь также используются в осветительных приборах. Признанные новым источником света 21-го века, светодиоды обладают непревзойденными преимуществами, такими как высокая эффективность, длительный срок службы и долговечность по сравнению с традиционными источниками света. Классификация по яркости: Светодиоды стандартной яркости (изготовлены из таких материалов, как GaP, GaAsP) Светодиоды высокой яркости (изготовлены из AlGaAs) Светодиоды сверхвысокой яркости (изготовленные из других современных материалов) ☆ Инфракрасные диоды (IRED): излучают невидимый инфракрасный свет и используются в различных целях.   Обзор тестирования надежности светодиодов: Светодиоды были впервые разработаны в 1960-х годах и изначально использовались в светофорах и потребительских товарах. Только в последние годы они были приняты для освещения и в качестве альтернативных источников света. Дополнительные примечания по сроку службы светодиодов: Чем ниже температура перехода светодиода, тем дольше его срок службы, и наоборот. Срок службы светодиодов при высоких температурах: 10 000 часов при 74°C 25 000 часов при 63°C Светодиодные источники света, являясь промышленным изделием, должны иметь срок службы 35 000 часов (гарантированный срок службы). Срок службы традиционных лампочек обычно составляет около 1000 часов. Ожидается, что светодиодные уличные фонари прослужат более 50 000 часов. Краткое описание условий тестирования светодиодов: Испытание на температурный шок Ударная температура 1 Комнатная температура Ударная температура 2 Время восстановления Циклы Метод шока Замечания -20℃(5 мин) 2 90℃(5 мин)   2 Газовый шок   -30℃(5 мин) 5 105℃(5 мин)   10 Газовый шок   -30℃(30 мин)   105℃(30 мин)   10 Газовый шок   88℃(20 мин)   -44℃(20 мин)   10 Газовый шок   100℃(30 мин)   -40℃(30 мин)   30 Газовый шок   100℃(15 мин)   -40℃(15 мин) 5 300 Газовый шок HB-светодиоды 100℃(5 мин)   -10℃(5 мин)   300 Жидкий шок HB-светодиоды   Испытание светодиодов на воздействие высокой температуры и высокой влажности (испытание THB) Температура/Влажность Время Замечания 40℃/95% отн.влажности 96 часов   60℃/85% отн.влажности 500 Часов Тестирование срока службы светодиодов 60℃/90% отн.влажности 1000 Часов Тестирование срока службы светодиодов 60℃/95% отн.влажности 500 Часов Тестирование срока службы светодиодов 85℃/85%RH 50 часов   85℃/85%RH 1000 Часов Тестирование срока службы светодиодов   Испытание на долговечность при комнатной температуре 27℃ 1000 Часов Постоянное освещение при постоянном токе   Испытание на долговечность при высоких температурах (испытание HTOL) 85℃ 1000 Час Постоянное освещение при постоянном токе 100℃ 1000 Час Постоянное освещение при постоянном токе   Испытание на долговечность при низких температурах (испытание LTOL) -40℃ 1000 Час Постоянное освещение при постоянном токе -45℃ 1000 Час Постоянное освещение при постоянном токе   Тест на паяемость Условие теста Замечания Штыри светодиода (на расстоянии 1,6 мм от дна коллоида) погружаются в оловянную ванну при температуре 260 °C на 5 секунд.   Штыри светодиода (на расстоянии 1,6 мм от дна коллоида) погружаются в оловянную ванну при температуре 260+5 °C на 6 секунд.   Штыри светодиода (на расстоянии 1,6 мм от дна коллоида) погружаются в оловянную ванну при температуре 300 °C на 3 секунды.     Тест печи для пайки оплавлением 240℃ 10 секунд   Испытание на воздействие окружающей среды (провести обработку пайкой TTW в течение 10 секунд при температуре 240 °C ± 5 °C) Название теста Справочный стандарт См. содержание условий испытаний в JIS C 7021. Восстановление Номер цикла (H) Температурный цикл Автомобильная спецификация -40 °C ←→ 100 °C, с выдержкой 15 минут 5 минут 5/50/100 Температурный цикл   60 °C/95% RH, при подаче тока   50/100 Обратное смещение влажности Метод MIL-STD-883 60 °C/95% отн.влажности, 5 В RB   50/100  
    ЧИТАТЬ ДАЛЕЕ
  • Сравнение климатических испытаний и экологических испытаний Сравнение климатических испытаний и экологических испытаний
    Sep 19, 2024
    Сравнение климатических испытаний и экологических испытанийИспытание на климатическую среду - испытательная камера с постоянной температурой и влажностью, испытательная камера с высокой и низкой температурой, испытательная камера с холодным и горячим ударом, испытательная камера с влажным и переменным нагревом, испытательная камера с быстрым изменением температуры, испытательная камера с линейным изменением температуры, постоянная температура при входе камера для испытаний на влажность и т. д. Все они предусматривают контроль температуры.Поскольку на выбор имеется несколько точек контроля температуры, метод контроля температуры в климатической камере также имеет три решения: контроль температуры на входе, контроль температуры продукта и «каскадный» контроль температуры. Первые два — это одноточечный контроль температуры, а третий — двухпараметрический контроль температуры.Метод одноточечного контроля температуры очень развит и широко используется.Большинство ранних методов управления представляли собой переключательное управление «пинг-понг», широко известное как нагрев, когда холодно, и охлаждение, когда жарко. Этот режим управления является режимом управления с обратной связью. Когда температура циркулирующего воздушного потока превышает заданную температуру, электромагнитный клапан охлаждения открывается, чтобы подать холодный объем в циркулирующий воздушный поток и снизить температуру воздушного потока. В противном случае выключатель нагревательного устройства включается для непосредственного нагрева циркулирующего воздушного потока. Поднимите температуру воздушного потока. Этот режим управления требует, чтобы холодильное устройство и нагревательные компоненты испытательной камеры всегда находились в режиме ожидания, что не только тратит много энергии, но и контролируемый параметр (температура) всегда находится в состоянии «колебания», и точность управления невысокая.Теперь одноточечный метод контроля температуры в основном заменяется на универсальный метод пропорционально-дифференциально-интегрального (ПИД) управления, который может обеспечить коррекцию контролируемой температуры в соответствии с прошлым изменением контролируемого параметра (интегральное управление) и тенденцией изменения (дифференциальное управление). ), что не только экономит энергию, но и амплитуда «колебаний» мала, а точность управления высока.Двухпараметрический контроль температуры предназначен для одновременного сбора значения температуры воздухозаборника испытательной камеры и значения температуры рядом с продуктом. Воздухозаборник испытательной камеры расположен очень близко к месту установки испарителя и нагревателя в помещении модуляции воздуха, и его величина напрямую отражает результат модуляции воздуха. Использование этого значения температуры в качестве параметра управления с обратной связью имеет то преимущество, что позволяет быстро модулировать параметры состояния циркулирующего воздуха.Значение температуры рядом с продуктом указывает на реальные температурные условия окружающей среды, которым подвергается продукт, что является требованием спецификации испытаний на воздействие окружающей среды. Использование этого значения температуры в качестве параметра управления с обратной связью может обеспечить эффективность и достоверность температурного испытания на окружающую среду, поэтому этот подход учитывает преимущества обоих и требования фактического испытания. Стратегия двухпараметрического контроля температуры может представлять собой независимое «управление с разделением времени» двух групп температурных данных, или два взвешенных значения температуры могут быть объединены в одно значение температуры в качестве сигнала управления с обратной связью в соответствии с определенным весовым коэффициентом. а значение весового коэффициента связано с размером испытательной камеры, скоростью ветра циркулирующего воздушного потока, величиной скорости изменения температуры, тепловой мощностью работы продукта и другими параметрами.Поскольку теплообмен представляет собой сложный динамический физический процесс и на него сильно влияют условия атмосферной среды вокруг испытательной камеры, рабочее состояние самого испытуемого образца и сложность конструкции, сложно создать идеальную математическую модель для него. контроль температуры и влажности испытательной камеры. Чтобы повысить стабильность и точность управления, в управление некоторыми камерами температурных испытаний внедрены теория и метод управления нечеткой логикой. В процессе управления моделируется образ мышления человека, а прогнозирующее управление применяется для более быстрого управления космическим полем температуры и влажности.По сравнению с температурой выбор точек измерения и контроля влажности относительно прост. Во время циркуляции хорошо регулируемого влажного воздуха в испытательную камеру с высоко- и низкотемпературным циклом обмен молекулами воды между влажным воздухом, испытуемым образцом и четырьмя стенками испытательной камеры очень мал. Пока температура циркулирующего воздуха стабильна, поток циркулирующего воздуха от входа в испытательную камеру до выхода из испытательной камеры находится в процессе. Влажность влажного воздуха меняется очень мало. Таким образом, значение относительной влажности обнаруженного воздуха в любой точке поля потока циркулирующего воздуха в испытательной камере, например, на входе, в среднем потоке поля потока или на выходе возвратного воздуха, в основном одинаково. По этой причине во многих испытательных камерах, в которых для измерения влажности используется метод влажного и сухого термометра, датчик влажного и сухого термометра устанавливается на выпускном отверстии возвратного воздуха испытательной камеры. Кроме того, благодаря конструкции испытательной камеры и удобству обслуживания в использовании датчик влажного и сухого термометра, используемый для измерения и контроля относительной влажности, расположен на входе возвратного воздуха для легкой установки, а также помогает регулярно заменять влажный датчик. марлю колбы и очистите головку измерения температуры от сопротивления PT100, а также в соответствии с требованиями теста GJB150.9A на влажную жару 6.1.3. Скорость ветра, проходящего через датчик смоченного термометра, не должна быть ниже 4,6 м/с. Датчик смоченного термометра с небольшим вентилятором установлен на выходе возвратного воздуха для облегчения обслуживания и использования.   
    ЧИТАТЬ ДАЛЕЕ

оставить сообщение

оставить сообщение
Если вы заинтересованы в нашей продукции и хотите узнать более подробную информацию, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.
представлять на рассмотрение

Дом

Продукты

WhatsApp

связаться с нами